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Abstract The leniperaturedependent behaviour of the MY interaction in one 'diinenSion b 
investigated for the free elecbon gas modei by both analytical and nuinerical methods. The 
present studies show that the range function has the form cos(2kFr)e-C1(7)r/r8('), where the 
exponents o(T) and @(T) increase and decrease monotonically, respectively. with increasing 
temperature. 

1. Introduction 

The RKKY interaction is the indirect interaction between local spins mediated by itinerant 
electron spins. It is known that this interaction is dscillatory, and its envelope 'falls off 
as l / r d  at zero temperature ih the long-radge limit ih the d-dhensional free electron gas 
model [l-31. This zero-temperature behaviour implies that the pure one-dimensional RKKY 
interaction has the potential to produce the phase tiansition to spin ordering, because a phase 
bansition can take place at a finite temperature even in one dimension if the interaction falls 
off no more quickly thai l / r z  [4]. However, the coupling constant of this interaction is 
proportional to the itinerant electron susceptibility, which depends in general on temperature. 
Therefore, the interaction form at zero temperature doe$ not supply enough information on 
whether a phase transition is possible or not at finite temperature. 

The coupling constant Jij of the RKKY interaction in spin Hamiltonian form 

H E -  - X JijSiSj 
i j  

is proportional to the free electron susceptibility as 

where x ( r i j )  is the free electron susceptibility. The indices i and j denote local spins, and 
J represents the exchange interaction between local spins and itinerant electron spins. The 
susceptibility ~ ( r )  is ubtained by the Fourier transform of the susceptibility in momentum 
space: 
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where fk and &k are the Fermi distribution function and free electron energy at wavevector 
k ,  respectively. 

In one dimension, x (q )  diverges at q = &2k~ at zero temperature. The susceptibility 
x(r) ,  which decays as cos(2kpr)/r in the long-range limit, reflects this divergence in its 
period [I]. As temperature increases from zero this divergence disappears, which has been 
already noticed by Rice and Strassler [5,6]. Their study has shown that x ( 2 k ~ )  diverges 
logarithmically with temperature. For the case d = 3, Darby has shown that, by use of a 
first-order perturbation method, the asymptotic form of the susceptibility is 
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in the low-temperature limit [7]. However, the method which he used cannot be generalized 
to the one-dimensional case. A direct application of his method with the one-dimensional 
free electron Green function, which has the form (i/2k)eikx, would lead to the same 
erroneous result which was derived in [3] for the case T = 0. This was first pointed 
out Nagamiya; more recently, a rigorous derivation was given by Yafet [I] .  In the present 
study we choose the case of one itinerant electron per site, where the ground-state energy 
per spin is lowest and therefore the highest transition temperature is expected, if any exists, 

In section 2 we discuss the analytic derivation of the temperature-dependent behaviour 
of the RKKY interaction by the use of a low-temperature expansion technique. As the lowest 
order of approximation, the derivative of the Fermi distribution function is approximated 
by the rectangular and triangular form for finite temperature. The range function in these 
cases shows an oscillatory decaying beat form, which is somewhat unrealistic. Cubic and 
quintic polynomial functions were utilized as the next stage of approximation, which leads 
to a qualitatively correct behaviour of x(r) .  In section 3, the range functions evaluated by a 
numerical method are compared with those of the analytical method. The result shows that 
the RKKY interaction decays exponentially rather than algebraically at finite temperature, 
which manifests itself in the fact that the interaction has a short-range character at non-zero 
temperature. 

2. Analytical approach 

In one dimension, F ( q )  defined in (3) can be rewritten as 

where the independent electron gas model was assumed. Since the integrand of equation (5 )  
is singular at q = &2k, a Sommerfeld type of expansion cannot reflect the correct behaviour 
of F ( q )  near q = ct2kp, and accordingly the long-range behaviour of the susceptibility x ( r )  
in one dimension, since it  is heavily dependent on the form of x(q) near q = Tt2k~. In this 
work, the low temperature expansion of fl(&) was used instead of the Sommerfeld method; 
F ( q )  can then be obtained analytically for the following approximations of f ’ (&) ,  

The simplest approximation off’(&) will be the normalized rectangular function, which 
is defined as 

-If26 & F - S < E c & F + a  

0 otherwise. 
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The parameter 8 is a measure of temperature because ~ ' ( E F )  is inversely proportional to 
temperature, i.e. ~ ' ( E F )  = 1 /4k~T.  In this approximation, F ( q )  is derived to be 

L 
F ( q )  = G [ - G c ( k l ,  4) + Gr(kZ, 411 (7) 

where 

and 

In the above calculation the chemical potential at finite temperature was approximated to 
the Fermi energy. This substitution does not affect the result, except for the fact that the 
characteristic wavenumbers remain unchanged with temperature. If the chemical potential 
were used instead of the Fermi energy, the oscillation wavelength of the range function 
increases slowly with increasing temperature and therefore the coupling constant of the 
RKKY interaction is expected to show a beat form though its envelope remains same. 

The range function, which is proportional to ~ ( r ) .  is defined as the Fourier transform 
of F ( q ) :  

The integral 
m m 

dqei9'G,(k, q )  = /" dqe'q'(k + 
-m 4q 

can be rewritten in the following form: 

Consider the first integral on the right-hand side for complex q along the closed contour, as 
depicted in figure 1. The path of integration from q = -2k to q = 2k goes infinitesimally 
above a cut along the real axis. The contribution of the infinite semicircle is then zero by 
Jordan's lemma, because the integrand goes to zero in the limit 141 --f CO. Contributions 
from infinitesimal semicircles 01 and y are also zero because lim,,o E In 6 = 0; however, 
the contribution from p is -kzrr2. The second part of the right-hand side of (12) becomes 

) + n k 2 1 u d q g  sinqr 
r 

by use of the Cauchy principal value theorem. Consequently, the range function in the 
rectangular approximation is 
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A straightforward, but somewhat tedious, calculation shows that the range function in 
the above equation reduces to the correct zero-temperature form as 6 goes to zero: 

At finite temperature, Rice and Strtissler showed that F ( 2 k ~ )  can be approximated as 
; N ( O ) l n ( l . l 4 ~ g / k e T )  [5 ] ,  where N ( 0 )  is the density of states at the Fermi surface. This 
expression was obtained on the assumption that the energy near the Fermi surface is linea 
as &k = E F  -+ A(lkl - kf)fikF/m for I Q  - &FI < EB. On the other hand, our rectangular 
approximation of ? ( E )  leads to ;N(O)[l + ~ I ( ~ E F / ~ B T ) ] ,  using the fact that 6 approaches 
UgT for 6 < 1. Both of the expressions show that F ( 2 k ~ )  diverges logarithmically in 
the low-temperature limit. At a finite temperature the range function pr(r) is an oscillatory 
decaying beat form for kFr >> 1 since there are two characteristic wavenumbers, kl and kz. 
This unrealistic property implies that the rectangular approximation is too crude to reflect 
the correct long-range behaviour of the range function even in a qualitative sense. 

The second approximation, named the triangular approximation, is expressed as 1 ;(e - E F + s ) / P  E F - ~  < E  c EF 

= (& - EF - 6)/Sz E F < E < E F + ~  (16) 
otherwise. 

Then F ( q )  for the one-dimensional free electron gas model becomes 

where 

The range function can be derived by a similar method used for the rectangular case once 
the terms are grouped properly to be Fourier transformed. Omitting the detailed calculation, 
the range function is 



Temperature-dependent RKKY interaction in one dimension 1041 

where 

x2k' xZk4 J" dqy $(k, r )  = - - - 
4 4 -7A 

The range function p f ( r )  in the triangular approximation is also an oscillatory decaying beat 
form, because of three characteristic wavenumbers k l ,  kZ and kF. These unrealistic beat 
forms in the rectangular and triangular approximations originate from the discontinuities of 
f;(d and &'(E). 

Figure 2. The cubic and quintic approximations compared with the real f'(c). The full 
curve represents f'(&). and the dotted and broken curves represent the cubic and quintic 
approximations, respectively. 

The lowest-order differentiable approximation is the cubic approximation (figure 2). 
defined as { r - &F + @[2(& - EF) - d / S  4 E F - S < & < E F  

EF < E < EF + 8 
otherwise. 

L'@) = - (E  - EF - s ) ' [ ~ ( E  - EF)  + si/s4 (22) 

The analytical expression of F ( q )  can also be derived in this approximation. However, 
F ( q )  consists of too many terms and it is non-trivial to group these terms so that it can 
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be Fourier transformed. We therefore adopted numerical methods, rather than spending 
too much time to get analytical solution. The sample plot of the range functions in this 
approximation is shown in figure 3 for two different 6. As can be seen in the figure, the 
envelope of the range function decays monotonically, and no beat form is observed. At 
8/&F = the range function is very close to the sine integral function, which is expected 
at zero temperature, The sine integral function si(x) differs from cosx lx  by only 3% even 
at x = 3.0, and the long-range limit approximation cos(2kkpr)lr is exact to within 1% error 
after the first period. The figure shows that the amplitude of the oscillation at 8/sp = 0.05 
decays much faster than that at lo-&. It is the general tendency that the amplitude of the 
oscillation decays faster with increasing 6. Since the range function is proportional to the 
free electron charge (or spin) density near an external point charge (or magnetic field), this 
means that free electrons are attracted more loosely to screen the point charge (or magnetic) 
fieid at finite temperature. 

0.1 

0.05 

0 

-0.05 

-0.1 
0 5 10 15 20 

2k,r/n 

Figure 3. The m g e  functions for 6 / k g T  = (brokn e w e )  and 0.05 (full curve). 

The strongest interaction between local spins occurs when the number of itinerant 
electrons per site is one, since local spins locate at every local extreme point, In this 
case, the envelope of the oscillation itself represents the coupling constant of the RKKY 
interaction. By carefully studying the decay pattern of the envelope as explained in the 
next section, we found that the envelope includes the exponentially decaying factor at finite 
temperature. The envelope fits well to the form where the exponents 01 and B 
increase and decrease monotonically with increasing 6, respectively. 

The approximations, of which the order is higher than cubic, also produce exponentially 
decaying range functions with no beat symptoms. For example, the envelope of the range 
function in the quintic approximation (figure 2) defined as 
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- ( E  - EF + 8)3[6(E - Ep)’ - 38(& - E F )  + 8’]/s6 
( E  - EF - 8)3[6(& - &F)’ + 38(& - E F )  + 8z]/86 

EF - 6 < E c EF 

EF < E C EF + 8 (23) l o  otherwise 
fi(E) = 

fits to the same form even though the temperature dependences of the exponents are 
slightly different from those of the cubic approximation. It is worth noting that the higher- 
order approximations  off'(^) do not guarantee a more precise result because they do not 
necessarily resemble f’(E) better than the lower ones. In figure 2, for example, we can 
see that the quintic approximation fits worse than the cubic one to the real f’(8). For this 
reason, we calculated F ( q )  and the range function q(r )  numerically to find the accurate 
temperature dependence of the exponents. 

3. Numerical simulation 

For the summation in (3) the IMSL integration routine for the integrand, which has a finite 
number of non-analytic points, was used. Since F ( q )  is symmetric with respect to q,  the 
cosine transform routine in IMSL was used to get q ( r ) .  The limits of the summation in (3) 
were set so that the value of f’(&) is less than e-” outside the integration range. The 
interval of the integration was the integration range divided by 128k. Finer intervals than 
this did not produce a noticeable change. All the calculations were performed in convex 
C1 in double precision. 

4 

0 ’  I 
0 0.5 i 1.5 2 

@kF 

Figure 4. F(q.  7) against wavenumber q.  F(q.  T) is normalized by fhe value at q = 0 and 
T = 0. The broken, full and long-dash broken curves correspond to T = W4, T = 0.01, and 
T = 0.1, respectively, where T is the temperature normalized with respect to the Fermi energy. 
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Figure 4 shows the sample plot of F ( q )  for three different temperatures normalized 
with respect to the Fermi energy. At finite temperature, the divergence of x ( q )  at q = 2 k ~  
disappears, and the peak value decreases with increasing temperature. The range function 
obtained by Fourier transformation of F ( q )  shows a monotonically decaying oscillation, 
similar to the graph in figure 3. The period of the oscillation does not change from the 
value at zero temperature even at T = 0.05, which is well above room temperature in 
most cases. At this temperature, the result of the numerical simulation did not show any 
noticeable symptom of period change up to the 50th period 

0.1 

0.01 

0.001 

0.0001 
0 100 200 300 400 

rla 
Figure 5. Semilog plot of the range function for the case of an antiferromagnetic ground stare. 
The tcmpemures are O.WOI, 0.002. 0.004. 0.006. 0.008, 0.01 respectively. from right to left. 
Inset: log-log plor of Ihe same daw. 

The inset in figure 5 is a log-log plot of the envelopes of these oscillations in a larger 
range for various temperatures. The curve at T = 0.0001 is very close to a straight line with 
slope one, i.e. the envelope decays almost as l / r ,  as expected at zero temperature. The 
envelopes decay faster with increasing temperature. The semilog plot in figure 5 clearly 
shows that these envelopes include an exponentially decaying factor. We found that these 
curves fit well not to a form e-'r/r, but to e-"/r@, where both the exponents 01 and p have 
a temperature dependence. Figures 6 and 7 show the temperature-dependent behaviour of 
exponents 01 and p obtained by least-squares fitting. The exponent factor 01 is very close 
to a straight line of slope 0.03, except at very low temperatures, at least up to T = 0.015. 
The exponent factor p ( T )  decreases quickly at low temperatures; after that its the rate of 
decrease slows with increasing temperature. 

4. Conclusion 

The free electron susceptibility x ( r )  has the form c o ~ ( 2 k ~ r ) e ~ ( ~ ' ~ / r ~ ( ' '  where the exponent 



Temperature-dependent RKKY interaction in one dimension 1045 

0.02 

0.OG 
0 

- 0 

0 

0 
0 

0 

I 0.04 

0.8 

E 
n 

0.7 

0 - 
0 

- 

0 

0 

0 

0 

1- 

0 0.005 0.01 0.015 
k,T/e, 

0 

0.6 
t 

0.5 
0 0.005 0.01 0.015 

k a T k  

Figure 6. The exponent 
factor 01 against temperature. 

Figure 7. The exponent 
faclor p against remperature. 

factors a(T) and p ( T )  monotonically increase and decrease, respectively. The low- 
temperature approximations  off'(^), such as the rectangular and triangular forms which 
have discontinuous points, are inadequate to analyse the envelope shape of the range function 
because of its beat form. The higher-order approximations, which are differentiable, produce 
a qualitatively correct form for x ( r ) .  

The faster decay of the range function at finite temperature means that the number of 
electrons gathering to screen the perturbation decreases with increasing temperature. The 
exponentially decaying factor in the coupling constant of the RKKY interaction implies that 
the ferromagnetic or antiferromagnetic phase transition due to this interaction is not possible 
at a finite temperature in one dimension. 

It was reported that a phase transition was observed in copper phthalocyanine iodine 
(Cu@c)I) [a]. Cn(pc)I is the molecular metal which is a highly onedimensional system 
having a dense array of local moments embedded in itinerant electrons of which the number 
per site is 5/3. The d electron spins localized at the Cu sites interact with each other via the 
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n electrons conducting along the chain. In Cu(pc)I, the direct dipole-dipole interaction is 
too weak to invoke the phase transition at the observed temperature 8 K, and therefore this 
phase transition is believed to be due to the indirect exchange interaction. This situation 
seems to make it reasonable to use the RKKY interaction as the model Hamiltonian for the 
description of this indirect interaction in this system. However, our analysis shows that 
the phase transition observed in Cu(pc)I is not due to a pure one-dimensional RKKY-type 
indirect interaction, because if the number of itinerant electrons is other than one the indirect 
interaction becomes weaker, as explained above. 
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